Gene Ontology based clustering using semantic similarity

csbl.go is an R package for computing semantic similarity between genes using Gene Ontology annotation and for clustering genes based on the similarity measures. The package has been tested with R 2.8-3.0 on Windows and Linux. csbl.go is licensed under GNU General Public License.

See the associated publication: Kristian Ovaska, Marko Laakso, Sampsa Hautaniemi. Fast Gene Ontology based clustering for microarray experiments. BioData Mining 2008, 1:11.

Download

File Date Download Comments
User Guide 2012-07-17 userguide.pdf Up-to-date with latest code.
csbl.go 1.4.1 2013-10-07 Windows: R 3.0+
Windows: R 2.12+
Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2013-09) and R 3.0.
csbl.go 1.4.0 2012-07-17 Windows: R 2.12+
Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2012-07). New organisms supported: Arabidopsis thaliana and Xenopus tropicalis. Added a code example to User Guide (heat map visualization).
csbl.go 1.3.7 2011-12-19 Windows: R 2.12+
Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2011-11) and R 2.14.
csbl.go 1.3.6 2011-06-16 Windows: R 2.12+
Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2011-06).
csbl.go 1.3.5 2010-11-30 Windows: R 2.12+
Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2010-11).
csbl.go 1.3.4 2010-04-19 Windows: R 2.x-2.11
Unix: Source
Fixed a bug in GO enrichment analysis that produced over-conservative p-values in Fisher's Exact Test; new p-values are smaller than previous p-values. Updated for latest GO (2010-04).
csbl.go 1.3.3 2009-11-11 Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2009-11). Fixed a crash in function ids.to.ontologies that occurs in some R versions.
csbl.go 1.3.2 2009-05-30 Windows: R 2.x-2.11
Unix: Source
Updated for latest GO (2009-05).
csbl.go 1.3.1 2009-02-09 Unix: Source Windows users should download version 1.3 (below) as 1.3.1 only contains a fix for the Linux version.
csbl.go 1.3 2008-11-17 Windows: R 2.x-2.11
Unix: Source
Manuscript version.

Installation

On Windows, download the Windows binary and install it from the R GUI (Packages -> Install package(s) from local zips files). On Unix, download the source package and install it using R CMD INSTALL.

You also need to install some Bioconductor packages (Biobase, annotate, GO.db) and CRAN packages (cluster and RUnit).

Contact

Copyright

Copyright 2007-2013 Kristian Ovaska, Marko Laakso.
TUT (C++ Template Unit Test Framework) Copyright 2002-2006 Vladimir Dyuzhev, 2007 Denis Kononenko.


Last updated: 2013-10-08